Meanings as proposals: a new semantic foundation for a Gricean pragmatics

Matthijs Westera
Institute for Logic, Language and Computation
University of Amsterdam

SemDial 2012, September $19^{\text {th }}$

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto only one of them.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto only one of them.
(3) Every student read Othello or King Lear \leadsto
every student read only one.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto only one of them.
(3) Every student read Othello or King Lear \leadsto
every student read only one.
(4) John will go to the party, or Mary, or both \leadsto ??

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto only one of them.
(3) Every student read Othello or King Lear \leadsto every student read only one.
(4) John will go to the party, or Mary, or both \leadsto ??
(5) You can come pick up the key, because my father or mother will be home $\ngtr>$ only one of them.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto only one of them.
(3) Every student read Othello or King Lear \leadsto every student read only one.
(4) John will go to the party, or Mary, or both \leadsto ??
(5) You can come pick up the key, because my father or mother will be home $\ngtr>$ only one of them.
(6) Q: Where can I buy an Italian newspaper?

A: In the little shop around the corner. \& only there.

Traditional account

1. S said $p \vee q$.

Traditional account

1. S said $p \vee q$.
2. $p \vee q$ is relevant

Maxim of Relation

Traditional account

1. S said $p \vee q$.
2. $p \vee q$ is relevant

Maxim of Relation
3. If $p \vee q$ is relevant, then also $p \wedge q$

Traditional account

1. S said $p \vee q$.
2. $p \vee q$ is relevant

Maxim of Relation
3. If $p \vee q$ is relevant, then also $p \wedge q$
4. S has an opinion as to whether $p \wedge q$ is true

Traditional account

1. S said $p \vee q$.
2. $p \vee q$ is relevant

Maxim of Relation
3. If $p \vee q$ is relevant, then also $p \wedge q$
4. S has an opinion as to whether $p \wedge q$ is true
5. If S believed $p \wedge q, S$ should have said so

Maxim of Quantity

Traditional account

1. S said $p \vee q$.
2. $p \vee q$ is relevant

Maxim of Relation
3. If $p \vee q$ is relevant, then also $p \wedge q$
4. S has an opinion as to whether $p \wedge q$ is true
5. If S believed $p \wedge q, S$ should have said so

Maxim of Quantity
6. S must believe that $p \wedge q$ is false.

Traditional account

1. S said $p \vee q$.
2. $p \vee q$ is relevant

Maxim of Relation
3. If $p \vee q$ is relevant, then also $p \wedge q$
4. S has an opinion as to whether $p \wedge q$ is true
5. If S believed $p \wedge q, S$ should have said so

Maxim of Quantity
6. S must believe that $p \wedge q$ is false.

Traditional account

1. S said $p \vee q$.
2. $p \vee q$ is relevant

Maxim of Relation
3. If $p \vee q$ is relevant, then also $p \wedge q$
4. S has an opinion as to whether $p \wedge q$ is true
5. If S believed $p \wedge q, S$ should have said so

Stipulation
Stipulation
Maxim of Quantity
6. S must believe that $p \wedge q$ is false.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto only one of them.
(3) Every student read Othello or King Lear \leadsto every student read only one.
(4) John will go to the party, or Mary, or both \leadsto ??
(5) You can come pick up the key, because my father or mother will be home $\ngtr>$ only one of them.
(6) Q: Where can I buy an Italian newspaper?

A: In the little shop around the corner. \& only there.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto ignorance
(3) Every student read Othello or King Lear \leadsto every student read only one.
(4) John will go to the party, or Mary, or both \leadsto ??
(5) You can come pick up the key, because my father or mother will be home $\ngtr>$ only one of them.
(6) Q: Where can I buy an Italian newspaper?

A: In the little shop around the corner. \& only there.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto ignorance
(3) Every student read Othello or King Lear \leadsto not every student read both.
(4) John will go to the party, or Mary, or both \leadsto ??
(5) You can come pick up the key, because my father or mother will be home \ngtr only one of them.
(6) Q: Where can I buy an Italian newspaper?

A: In the little shop around the corner. \& only there.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto ignorance
(3) Every student read Othello or King Lear \leadsto not every student read both.
(4) John will go to the party, or Mary, or both \leadsto only one of them.
(5) You can come pick up the key, because my father or mother will be home \ngtr only one of them.
(6) Q: Where can I buy an Italian newspaper?

A: In the little shop around the corner. $\psi>$ only there.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto ignorance
(3) Every student read Othello or King Lear \leadsto not every student read both.
(4) John will go to the party, or Mary, or both \leadsto only one of them.
(5) You can come pick up the key, because my father or mother will be home \leadsto only one of them.
(6) Q: Where can I buy an Italian newspaper?

A: In the little shop around the corner. $\psi>$ only there.

Some examples

(1) I saw John or Mary in the park \leadsto only one of them.
(2) I saw John, Mary, or Bob in the park \leadsto ignorance
(3) Every student read Othello or King Lear \leadsto not every student read both.
(4) John will go to the party, or Mary, or both \leadsto only one of them.
(5) You can come pick up the key, because my father or mother will be home \leadsto only one of them.
(6) Q: Where can I buy an Italian newspaper?

A: In the little shop around the corner. \sim only there.

Previous work

- Alonso-Ovalle, L. (2008).
- Chierchia, G., Fox, D., \& Spector, B. (2008).
- Groenendijk, J., \& Roelofsen, F. (2009).
- Horn, L. (1972).
- Rooij, R. van, \& Schulz, K. (2006).
- Sauerland, U. (2005).
- Spector, B. (2007).

Intuitions

Intuitions

- Dialogue is a collaborative enterprise. Implicatures are computed on responses to an initiative. The initiative provides the relevant alternatives.

Intuitions

- Dialogue is a collaborative enterprise. Implicatures are computed on responses to an initiative. The initiative provides the relevant alternatives.
- Utterances are proposals, merely drawing attention to possibilities. Attending a possibility can be done without committing to it.

Intuitions

- Dialogue is a collaborative enterprise. Implicatures are computed on responses to an initiative. The initiative provides the relevant alternatives.
- Utterances are proposals, merely drawing attention to possibilities. Attending a possibility can be done without committing to it.
(7) S: John or Mary will go to the party. R: Yes, John will go.

Intuitions

- Dialogue is a collaborative enterprise. Implicatures are computed on responses to an initiative. The initiative provides the relevant alternatives.
- Utterances are proposals, merely drawing attention to possibilities. Attending a possibility can be done without committing to it.
(7) S: John or Mary will go to the party. R: Yes, John will go, and maybe Mary too.

Intuitions

- Dialogue is a collaborative enterprise. Implicatures are computed on responses to an initiative. The initiative provides the relevant alternatives.
- Utterances are proposals, merely drawing attention to possibilities. Attending a possibility can be done without committing to it.
(7) S: John or Mary will go to the party. R: Yes, John will go.

A new approach

1. S said $p \vee q$, attending the possibilities p, q

A new approach

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q

A new approach

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is false.

A new approach

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is false.

A new approach

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is false.

Part II: Semantics

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground in one of several ways.

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in [φ].

- $[p]=? ?$
- $[\perp]=? ?$
- $[\varphi \vee \psi]=? ?$
- $[\varphi \wedge \psi]=$??

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in [φ].

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=$??
- $[\varphi \wedge \psi]=$??

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=$??
- $[\varphi \wedge \psi]=$??
'Let's do one of the updates in $[\varphi$] or let's do one of the updates in [ψ]'

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=$??
- $[\varphi \wedge \psi]=$??
'Let's do one of the updates in $[\varphi]$ or let's do one of the updates in $[\psi]$ ' \equiv 'Let's do one of the updates in $[\varphi] \cup[\psi]$.'

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=$??
'Let's do one of the updates in $[\varphi]$ or let's do one of the updates in $[\psi]$ ' \equiv 'Let's do one of the updates in $[\varphi] \cup[\psi]$.'

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=$??

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=$??
'Let's do one of the updates in $[\varphi]$ and let's do one of the updates in [ψ]

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=$??
'Let's do one of the updates in $[\varphi]$ and let's do one of the updates in $[\psi]$ ' \equiv 'Let's do two updates, one in $[\varphi]$ and one in $[\psi]$.'

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=\{\alpha \cap \beta: \alpha \in[\varphi], \beta \in[\psi]\}$
'Let's do one of the updates in $[\varphi]$ and let's do one of the updates in $[\psi]$ ' \equiv 'Let's do two updates, one in $[\varphi]$ and one in $[\psi]$.'

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=[\varphi] \sqcap[\psi]$
'Let's do one of the updates in $[\varphi]$ and let's do one of the updates in $[\psi]$ ' \equiv 'Let's do two updates, one in $[\varphi]$ and one in $[\psi]$.'

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=[\varphi] \sqcap[\psi]$

Semantics

Meanings as proposals
In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=[\varphi] \sqcap[\psi]$

Unrestricted inquisitive semantics (Ciardelli, et al., 2009)

Semantics

Meanings as proposals

In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=[\varphi] \sqcap[\psi]$

Unrestricted inquisitive semantics (Ciardelli, et al., 2009)

Definition: Compliance and entailment
$A \propto B \Longleftrightarrow$ for some $C, B \cup C=A \quad$ (compliance)
$A \vDash B \quad \Longleftrightarrow$ for some $C, B \sqcap C=A \quad$ (entailment)

Semantics

Meanings as proposals

In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=[\varphi] \sqcap[\psi]$

Unrestricted inquisitive semantics (Ciardelli, et al., 2009)

Definition: Compliance and entailment
$A \propto B \quad \Longleftrightarrow B \subseteq A$
$A \vDash B \quad \Longleftrightarrow$ for some $C, B \sqcap C=A \quad$ (entailment)

Semantics

Meanings as proposals

In uttering φ, a speaker proposes to update the common ground with one of the pieces of information in $[\varphi]$.

- $[p]=\{\{w \in \mathbf{W}: w(p)=1\}\}$
- $[\perp]=\{\varnothing\}$
- $[\varphi \vee \psi]=[\varphi] \cup[\psi]$
- $[\varphi \wedge \psi]=[\varphi] \sqcap[\psi]$

Unrestricted inquisitive semantics (Ciardelli, et al., 2009)

Definition: Compliance and entailment
$A \propto B \quad \Longleftrightarrow B \subseteq A$
$A \vDash B \quad \Longleftrightarrow$ for some $C, B \sqcap C=A \quad$ (entailment)

Discourse context and attention

Discourse context and attention

Let the discourse context contain a proposal under consideration, $\pi \subseteq \wp \mathbf{W}$, that always stores the most recent proposal. The possibilities in π are attended (Ciardelli, et al., 2009).

Discourse context and attention

Let the discourse context contain a proposal under consideration, $\pi \subseteq \wp \mathbf{W}$, that always stores the most recent proposal. The possibilities in π are attended (Ciardelli, et al., 2009).

- φ attends the possibilities in $[\varphi]$.

Discourse context and attention

Let the discourse context contain a proposal under consideration, $\pi \subseteq \wp \mathbf{W}$, that always stores the most recent proposal. The possibilities in π are attended (Ciardelli, et al., 2009).

- φ attends the possibilities in $[\varphi]$.
- For an initiative φ and response ψ s.t. $\varphi \propto \psi, \psi$ unattends a possibility α iff $\alpha \in[\varphi]$ and $\alpha \cap \cup[\psi] \notin[\psi]$.

Discourse context and attention

Let the discourse context contain a proposal under consideration, $\pi \subseteq \wp \mathbf{W}$, that always stores the most recent proposal. The possibilities in π are attended (Ciardelli, et al., 2009).

- φ attends the possibilities in $[\varphi]$.
- For an initiative φ and response ψ s.t. $\varphi \propto \psi, \psi$ unattends a possibility α iff $\alpha \in[\varphi]$ and $\alpha \cap \cup[\psi] \notin[\psi]$.

Fact: Attention and entailment
For an initiative φ and response ψ s.t. $\varphi \propto \psi, \psi$ unattends a possibility iff $\psi \not \neq \varphi$.

Part III: Pragmatics

A new approach

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is false.

A new approach

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is false.

A new approach

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is false.

The conversational maxims

Maxim of Quality

Maxim of Quantity

Maxim of Relation

The conversational maxims

Maxim of Quality
Only say what you believe to be true.

Maxim of Quantity

Maxim of Relation

The conversational maxims

Maxim of Quality
Only say what you believe to be true.

Maxim of Quantity
Make your contribution just as informative as required.
Maxim of Relation

The conversational maxims

Maxim of Quality
Only say what you believe to be true.

Maxim of Quantity
Make your contribution just as informative as required.
Maxim of Relation
Be relevant.

The conversational maxims

Maxim of Quality'
Only propose to do one of a set of updates if you consider them individually possible, and their union necessary.

Maxim of Quantity
Make your contribution just as informative as required.
Maxim of Relation
Be relevant.

The conversational maxims

Maxim of Quality'
Only propose to do one of a set of updates if you consider them individually possible, and their union necessary.

Maxim of Quantity'
Make the proposed updates just as informative as required.
Maxim of Relation
Be relevant.

The conversational maxims

Maxim of Quality'
Only propose to do one of a set of updates if you consider them individually possible, and their union necessary.

Maxim of Quantity'
Make the proposed updates just as informative as required.
Maxim of Relation'
Only propose updates that are relevant.

The conversational maxims

Maxim of Quality'
Only propose to do one of a set of updates if you consider them individually possible, and their union necessary.

Maxim of Quantity'
Make the proposed updates just as informative as required.
Maxim of Relation'
Only propose updates that are relevant.
Maxim of Attention
Do not attend/unattend a possibility without reason.

The conversational maxims

Maxim of Quality'
Only propose to do one of a set of updates if you consider them individually possible, and their union necessary.

Maxim of Quantity'
Make the proposed updates just as informative as required.
Maxim of Relation'
Only propose updates that are relevant.
Maxim of Attention
Do not attend/unattend a possibility without reason.

Examples

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is false.

Examples

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is false.
(by the Maxim of Quality')

Examples

1. S said $p \vee q$, attending the possibilities p, q
2. R said p, unattending the possibility q
3. The reason may be that R believes q is irrelevant.
(by the Maxim of Relation')

Examples

1. S said $p \vee q \vee r$, attending the possibilities p, q, r
2. R said p, unattending the possibilities q, r
3. The reason may be that R believes q, r are false.
(by the Maxim of Quality')

Examples

1. S said $p \vee q \vee(p \wedge q)$, attending the possibilities $p, q, p \wedge q$
2. R said p, unattending the possibilities $q, p \wedge q$
3. The reason may be that R believes $q, p \wedge q$ are false.
(by the Maxim of Quality')

Examples

1. S said $p \vee q \vee(p \wedge q)$, attending the possibilities $p, q, p \wedge q$
2. R said $p \vee q$, unattending the possibility $p \wedge q$
3. The reason may be that R believes $p \wedge q$ is false.
(by the Maxim of Quality')

Examples

For a domain $\{j, m, b\}$:

1. S said $\forall x . P(x) \vee Q(x)$,
2. R said $P(j) \wedge P(m) \wedge Q(b)$, unattending the other possibilities
3. The reason may be that R believes they are false.
(by the Maxim of Quality')

Implicatures and suggestions

Implicatures and suggestions

Definition: Attention-Quality implicature
For an initiative φ and response ψ, s.t. $\varphi \propto \psi$:
$\operatorname{AQimpl}(\psi, \varphi):=\cap\{\bar{\alpha}: \alpha \in[\varphi], \alpha \cap \cup[\psi] \notin[\psi]\}$

Implicatures and suggestions

Definition: Attention-Quality implicature
For an initiative φ and response ψ, s.t. $\varphi \propto \psi$:
$\operatorname{AQimpl}(\psi, \varphi):=\bigcap\{\bar{\alpha}: \alpha \in[\varphi], \alpha \cap \cup[\psi] \notin[\psi]\}$
Definition: Attention-Quality suggestion
$\operatorname{AQsugg}(\varphi):=\{\operatorname{AQimpl}(\psi, \varphi): \varphi \propto \psi, \boldsymbol{\operatorname { s i z e }}([\psi])=1\}$

Implicatures and suggestions

Definition: Attention-Quality implicature
For an initiative φ and response ψ, s.t. $\varphi \propto \psi$:
$\operatorname{AQimpl}(\psi, \varphi):=\cap\{\bar{\alpha}: \alpha \in[\varphi], \alpha \cap \cup[\psi] \notin[\psi]\}$
Definition: Attention-Quality suggestion
$\operatorname{AQsugg}(\varphi):=\{\operatorname{AQimpl}(\psi, \varphi): \varphi \propto \psi, \boldsymbol{\operatorname { s i z e }}([\psi])=1\}$
Examples:

Implicatures and suggestions

Definition: Attention-Quality implicature
For an initiative φ and response ψ, s.t. $\varphi \propto \psi$:
$\operatorname{AQimpl}(\psi, \varphi):=\cap\{\bar{\alpha}: \alpha \in[\varphi], \alpha \cap \cup[\psi] \notin[\psi]\}$
Definition: Attention-Quality suggestion
$\operatorname{AQsugg}(\varphi):=\{\operatorname{AQimpl}(\psi, \varphi): \varphi \propto \psi, \boldsymbol{\operatorname { s i z e }}([\psi])=1\}$
Examples:

- $p \vee q$ suggests $[\neg q \vee \neg p]$

Implicatures and suggestions

Definition: Attention-Quality implicature
For an initiative φ and response ψ, s.t. $\varphi \propto \psi$:
$\operatorname{AQimpl}(\psi, \varphi):=\bigcap\{\bar{\alpha}: \alpha \in[\varphi], \alpha \cap \cup[\psi] \notin[\psi]\}$
Definition: Attention-Quality suggestion
$\operatorname{AQsugg}(\varphi):=\{\operatorname{AQimpl}(\psi, \varphi): \varphi \propto \psi, \boldsymbol{\operatorname { s i z e }}([\psi])=1\}$
Examples:

- $p \vee q$ suggests $[\neg q \vee \neg p]$
- $p \vee q \vee r$ suggests $[(\neg q \wedge \neg r) \vee(\neg p \wedge \neg r) \vee(\neg p \wedge \neg q)]$

Implicatures and suggestions

Definition: Attention-Quality implicature
For an initiative φ and response ψ, s.t. $\varphi \propto \psi$:
$\operatorname{AQimpl}(\psi, \varphi):=\bigcap\{\bar{\alpha}: \alpha \in[\varphi], \alpha \cap \cup[\psi] \notin[\psi]\}$
Definition: Attention-Quality suggestion
$\operatorname{AQsugg}(\varphi):=\{\operatorname{AQimpl}(\psi, \varphi): \varphi \propto \psi, \boldsymbol{\operatorname { s i z e }}([\psi])=1\}$
Examples:

- $p \vee q$ suggests $[\neg q \vee \neg p]$
- $p \vee q \vee r$ suggests $[(\neg q \wedge \neg r) \vee(\neg p \wedge \neg r) \vee(\neg p \wedge \neg q)]$
- $p \vee q \vee(p \wedge q)$ suggests $[\neg q \vee \neg p \vee T]$

Implicatures and suggestions

Definition: Attention-Quality implicature
For an initiative φ and response ψ, s.t. $\varphi \propto \psi$:
$\operatorname{AQimpl}(\psi, \varphi):=\bigcap\{\bar{\alpha}: \alpha \in[\varphi], \alpha \cap \cup[\psi] \notin[\psi]\}$
Definition: Attention-Quality suggestion
$\operatorname{AQsugg}(\varphi):=\{\operatorname{AQimpl}(\psi, \varphi): \varphi \propto \psi, \boldsymbol{\operatorname { s i z e }}([\psi])=1\}$
Examples:

- $p \vee q$ suggests $[\neg q \vee \neg p]$
- $p \vee q \vee r$ suggests $[(\neg q \wedge \neg r) \vee(\neg p \wedge \neg r) \vee(\neg p \wedge \neg q)]$
- $p \vee q \vee(p \wedge q)$ suggests $[\neg q \vee \neg p \vee \top]$
- $\forall x . P(x) \vee Q(x)$ suggests $[\forall x . \neg Q(x) \vee \neg P(x)]$

Conclusion

Conclusion

An essentially Gricean account based on:

Conclusion

An essentially Gricean account based on:

- Dialogue as a cooperative enterprise.

Conclusion

An essentially Gricean account based on:

- Dialogue as a cooperative enterprise.
- Utterances as embodying proposals.

Conclusion

An essentially Gricean account based on:

- Dialogue as a cooperative enterprise.
- Utterances as embodying proposals.

Future work:

Conclusion

An essentially Gricean account based on:

- Dialogue as a cooperative enterprise.
- Utterances as embodying proposals.

Future work:

- Apply to conditionals, non-compliant responses.

Conclusion

An essentially Gricean account based on:

- Dialogue as a cooperative enterprise.
- Utterances as embodying proposals.

Future work:

- Apply to conditionals, non-compliant responses.
- 'Scale reversal' in radical inquisitive semantics.

Conclusion

An essentially Gricean account based on:

- Dialogue as a cooperative enterprise.
- Utterances as embodying proposals.

Future work:

- Apply to conditionals, non-compliant responses.
- 'Scale reversal' in radical inquisitive semantics.
- ...

Fin.

Thanks to the Netherlands Organisation for Scientific Research (NWO) for financial support; to F. Roelofsen, J. Groenendijk, and three anonymous reviewers for valuable comments.

